Critical solutions of nonlinear equations: local attraction for Newton-type methods
نویسندگان
چکیده
We show that if the equation mapping is 2-regular at a solution in some nonzero direction in the null space of its Jacobian (in which case this solution is critical; in particular, the local Lipschitzian error bound does not hold), then this direction defines a star-like domain with nonempty interior from which the iterates generated by a certain class of Newtontype methods necessarily converge to the solution in question. This is despite the solution being degenerate, and possibly non-isolated (so that there are other solutions nearby). In this sense, Newtonian iterates are attracted to the specific (critical) solution. Those results are related to the ones due to A. Griewank for the basic Newton method but are also applicable, for example, to some methods developed specially for tackling the case of potentially non-isolated solutions, including the Levenberg–Marquardt and the LP-Newton methods for equations, and the stabilized sequential quadratic programming for optimization.
منابع مشابه
Numerical solutions of fuzzy nonlinear integral equations of the second kind
In this paper, we use the parametric form of fuzzy numbers, and aniterative approach for obtaining approximate solution for a classof fuzzy nonlinear Fredholm integral equations of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the fuzzy nonlinear integral equations by an iterativeapproach.
متن کاملNumerical solutions of nonlinear fuzzy Fredholm integro-differential equations of the second kind
In this paper, we use parametric form of fuzzy number, then aniterative approach for obtaining approximate solution for a classof nonlinear fuzzy Fredholmintegro-differential equation of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the nonlinear fuzzy integro-differential equations by an it...
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملThermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method
The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathemat...
متن کاملNumerical solution for the risk of transmission of some novel coronavirus (2019-nCov) models by the Newton-Taylor polynomial solutions
In this paper we consider two type of mathematical models for the novel coronavirus (2019-nCov), which are in the form of a nonlinear differential equations system. In the first model the contact rate, , and transition rate of symptomatic infected indeviduals to the quarantined infected class, , are constant. And in the second model these quantities are time dependent. These models are the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 167 شماره
صفحات -
تاریخ انتشار 2018